(0) Obligation:

Runtime Complexity TRS:
The TRS R consists of the following rules:

zeroscons(0, n__zeros)
U11(tt, L) → s(length(activate(L)))
U21(tt) → nil
U31(tt, IL, M, N) → cons(activate(N), n__take(activate(M), activate(IL)))
and(tt, X) → activate(X)
isNat(n__0) → tt
isNat(n__length(V1)) → isNatList(activate(V1))
isNat(n__s(V1)) → isNat(activate(V1))
isNatIList(V) → isNatList(activate(V))
isNatIList(n__zeros) → tt
isNatIList(n__cons(V1, V2)) → and(isNat(activate(V1)), n__isNatIList(activate(V2)))
isNatList(n__nil) → tt
isNatList(n__cons(V1, V2)) → and(isNat(activate(V1)), n__isNatList(activate(V2)))
isNatList(n__take(V1, V2)) → and(isNat(activate(V1)), n__isNatIList(activate(V2)))
length(nil) → 0
length(cons(N, L)) → U11(and(isNatList(activate(L)), n__isNat(N)), activate(L))
take(0, IL) → U21(isNatIList(IL))
take(s(M), cons(N, IL)) → U31(and(isNatIList(activate(IL)), n__and(isNat(M), n__isNat(N))), activate(IL), M, N)
zerosn__zeros
take(X1, X2) → n__take(X1, X2)
0n__0
length(X) → n__length(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
isNatIList(X) → n__isNatIList(X)
niln__nil
isNatList(X) → n__isNatList(X)
isNat(X) → n__isNat(X)
and(X1, X2) → n__and(X1, X2)
activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(X1, X2)
activate(n__0) → 0
activate(n__length(X)) → length(X)
activate(n__s(X)) → s(X)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__isNatIList(X)) → isNatIList(X)
activate(n__nil) → nil
activate(n__isNatList(X)) → isNatList(X)
activate(n__isNat(X)) → isNat(X)
activate(n__and(X1, X2)) → and(X1, X2)
activate(X) → X

Rewrite Strategy: FULL

(1) DecreasingLoopProof (EQUIVALENT transformation)

The following loop(s) give(s) rise to the lower bound Ω(n1):
The rewrite sequence
isNat(n__length(n__isNat(X24163_3))) →+ isNatList(isNat(X24163_3))
gives rise to a decreasing loop by considering the right hand sides subterm at position [0].
The pumping substitution is [X24163_3 / n__length(n__isNat(X24163_3))].
The result substitution is [ ].

(2) BOUNDS(n^1, INF)